Radiation Effects on Polymeric Systems

Crosslinking and Scission

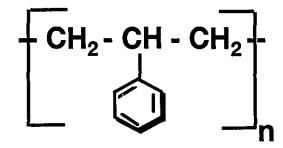
 Both crosslinking and scission occur on irradiation of polymers; however, their relative importance varies from polymer to polymer

Predominant Processes in Irradiated Polymers

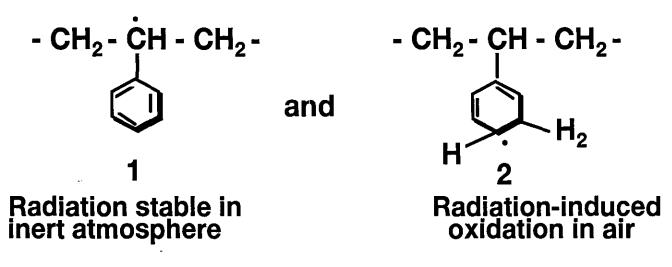
Crosslinking	Scission
Polyethylene	Polyisobutylene
Polypropylene	Poly-α-methylstyrene
Polystyrene	Polymethacrylates
Polyacrylates	Polyvinylidene chloride
Polyamides	Cellulose
Polyesters	Cellulose acetate
Rubbers	Polytetrafluoroethylene
Polysiloxanes	Polytrifluorochloroethylene
Polyacrolein	Poly-α-methacrylonitrile
Polymethylene	Polyethylene terephthalate
Chlorinated polyethylene	
Polyacrylonitrile	
Polyethylene oxide	

Polymer Structure Crosslinking vs Scission

 As the hydrogen in the backbone of an organic polymer is replaced with heavier substituents, its tendency to crosslink decreases and its tendency to scission increases


Yields of Gaseous Products from Irradiated Polymers^a (γ- or electron irrad, room temp)

Polymer	Products G (product)(molecules/100 ev)		
High-density PE	H ₂ ~3; CH ₄ ~0.002		
Polypropylene	H ₂ ~2.5; CH ₄ ~0.1		
Polyisobutylene	H ₂ ~1.5; CH ₄ ~0.5		
Poly(vinyl chloride)	HCI ~2.7; H ₂ ~0.15; CH ₄ ~0.002		
Poly(vinyl acetate)	H ₂ ~0.6; CH ₄ ~0.3; CO ~0.28; CO ₂ ~0.06		
Poly(methyl methacrylate)	CH ₄ ~ 0.6; CO ~0.5; CO ₂ ~0.4; H ₂ ~0.2		
Polystyrene	H₂ ~0.03; CH₄ ~ 1x10 ⁻⁵		
Poly-α-methyl styrene	H ₂ ~0.04; CH ₄ ~0.003		


^a Woods and Pikaev (1994)

Free Radicals Formed on Irradiation of Polyethylene alkyl radical allyl radical - At very high doses -CH₂-CH₂-(CH₂-CH₂)_n- -----> $-CH_2-CH-(CH=CH)_x-(CH_2-CH)_{n-x}$ polyenyl radical

Radiation Effect on Polystyrene

- lons and radicals formed on irradiation
- Shows thermoluminescence on irradiation at - 196°C and subsequent warming
- G(free radicals) low, ~0.2

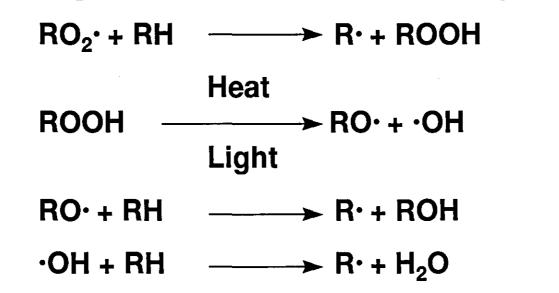
Radiation Effect on Polypropylene

- On irradiation, long-lived free radicals formed Low temperature (-196°C)
- $-CH_{2} \dot{C} CH_{2} CH_{3} CH$
- Overall effect of irradiation: loss of mechanical strength Dole (1973); Bradley (1984)

Chemical Basis of Oxidative Degradation

Initiation

RH	-~~~	R• + H•
H• + RH	>	$R^{1} + H_{2}$
R• + O ₂	>	RO ₂ •


Crosslinking

R[•] + R[•] → R-R (not favoured in air/oxygen)

 Degradation RO₂・, ROOH → Chain scission, degradation, alcohols, ketones

Propagation, Chain Reaction and Post-Irradiation Degradation of Polymers

 Oxidative degradation of polymers reduces strength and flexibility, causes cracking, increases moisture uptake and degrades electrical insulation properties

 Oxidative degradation usually continues for months after irradiation, e.g., initiated by the reactions of ROOH

Radiation Effects on Polyethylene

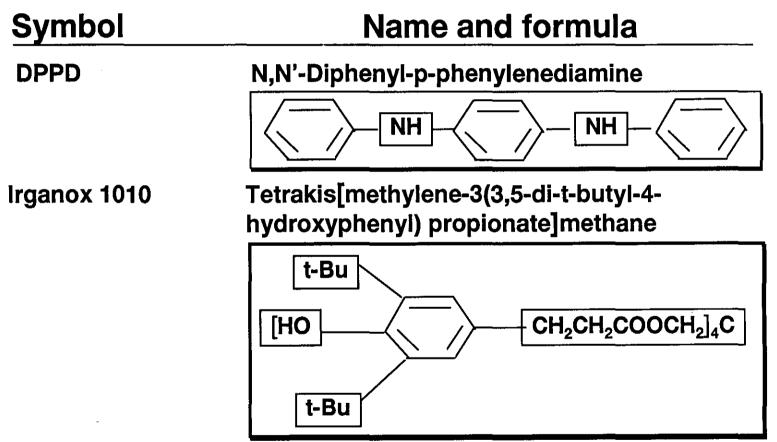
- Known products on irradiation in air include H₂O, CO, CO₂, alcohols, ketones, hydroperoxides, peroxides and carboxylic acids
- Free radicals (alkyl and allyl) usually considered precursors of crosslinks
- Free radical migration form crystalline to amorphous regions
- Unsaturation in PE participates in crosslinking reactions
- Oxygen and additives excluded from the crystalline regions
- Roles of excited states and ionic reactions not well understood

Radiation-Induced Oxidation of Polymers

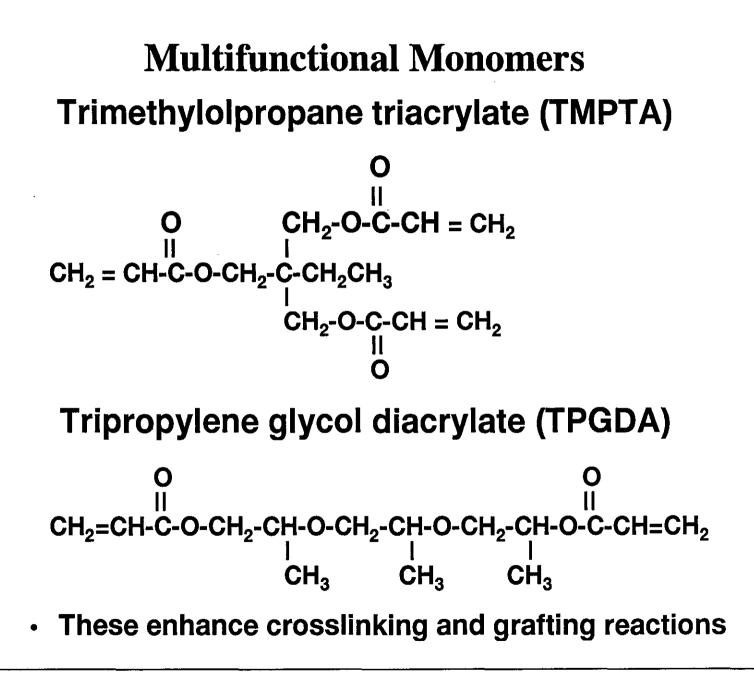
G-Value of Oxygen Consumption at Room Temperature under ~ 70 kPa Oxygen (Kashiwabara and Seguchi, 1992)

Polymer	Dose (kGy)	Dose Rate (kGy/h)	G(-O ₂)
Low-density polyethylene	500-1000	10	14
High-density polyethylene	500-1000	10	18
Medium-density polyethylene	500-1000	10	18
Ethylene propylene rubber	100-500	2	8
Isotactic polypropylene	100-200	10	50
Polyvinyl chloride	100-200	10	29
Polyvinyl chloride (stabilized)	100-200	10	11

Polymer Degradation by Irradiation

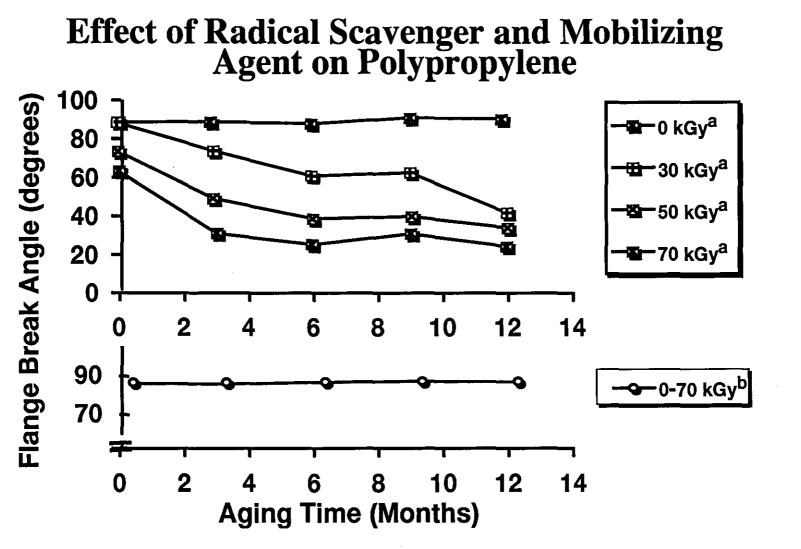

- Radiation degradation can be used to reduce the molecular weight of commercial polymers, e.g., polypropylene and polyethylene oxide
 - PP-vis-breaking, a patented process
- Teflon: scrap or waste Teflon is converted into useful powder and low MW products by irradiation (500 kGy), e.g., for producing lubricants and coated non-stick pans

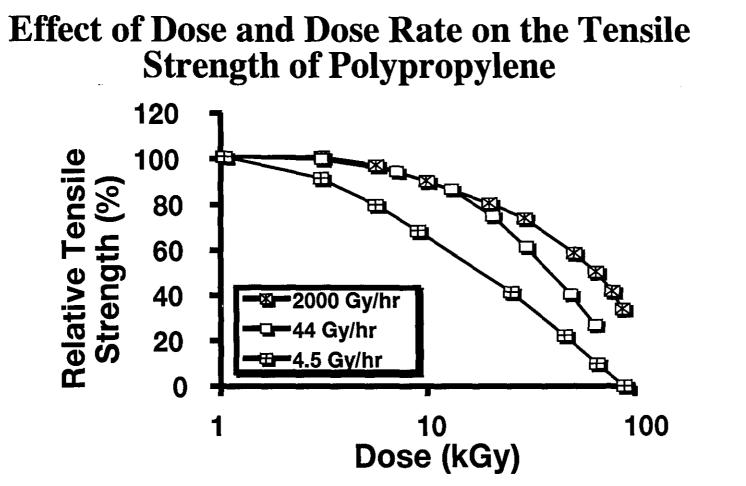
Effect of Additives


There are four main types of additives whose effect on irradiation of polymeric systems needs to be considered

- 1. Crosslinking agents: these are typically multifunctional monomers (such as di-and triacrylates) that reduce the dose required for crosslinking
- 2. Degradation agents: primarily oxygen; it degrades polymers via the formation of peroxy radicals
- 3. Protective agents: basically, there are two types of protectors- the anti-rads, which act as energy acceptors (such as pyrene and other aromatic hydrocarbons), and free radical scavengers or anti-oxidants, e.g., phenols, which protect the polymer via peroxy or carbon centred radical reactions
- 4. Neutral additives: frequently, mineral powders or fibres are added to polymers; many of these have no effect on irradiation of polymers

Chemical Formulae of Some Antioxidants (Kashiwabara and Seguchi, 1992)


 Use of antioxidants, and mobilizers (e.g. mineral oils), reduces radiation-induced damage to most polymers


Effect of Electron and Gamma Irradiation on the Colour of Polycarbonate Resin

Dose (kGy)	Electron Yellowness Index	Gamma Yellowness Index
0	-	1.2
10	1.0	8.4
40	1.6	26.4

• The level of colour developed varies from polymer to polymer, and also depends on the stabilizers used

a. Radical scavenger, b. Radical scavenger + mobilizing agent

- In general, the mechanical properties of polymers are less adversely affected on electron irradiation, as compared to gamma irradiation
- Satisfactory stabilized polymers for both types of irradiations are available